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Abstract
The domain D of all the coupling strengths compatible with the reality of the
energies is studied for a family of non-Hermitian N × N matrix Hamiltonians
H(N) with tridiagonal and PT -symmetric structure. At all dimensions N, the
coordinates are found of the extremal points at which the boundary hypersurface
∂D touches the circumscribed sphere (for odd N = 2M + 1) or ellipsoid (for
even N = 2K).

PACS number: 03.65.Ge

1. Introduction

1.1. Non-Hermitian chain models

In many quantum systems (typically, in nuclear and condensed matter physics), the observed
spectra can be fitted by the equidistant harmonic-oscillator energies (i.e., by E(HO)

n = 2n+ 1 in
suitable units). An improvement of this fit can be based on a perturbatively mediated transition,
say, to the popular nearest-neighbour-interaction model with an infinite-dimensional ‘chain-
model’ tridiagonal Hamiltonian

H(∞) =




1 a0 0 . . .

b0 3 a1 0 . . .

0 b1 5 a2
. . .

...
. . .

. . .
. . .

. . .




. (1)

For the real coupling strengths an, bm the manifest asymmetry of our Hamiltonian H(N) (with
infinite as well as finite matrix dimension N) need not necessarily contradict the postulates of
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quantum mechanics. This may be illustrated on the so-called Swanson’s model with N = ∞
[1] or, more easily, on the simplest truncated two-dimensional special case of equation (1),

H(2) =
(

1 a

b 3

)
.

Both its eigenvalues E± = 2 ±√
1 + ab remain real (i.e., in principle, ‘observable’) whenever

ab � −1. Inside this ‘domain of physical acceptability’, i.e., for

(a, b) ∈ D(2) ≡ {(x, y)|x, y ∈ R, xy > −1} (2)

these energies are also non-degenerate. This gives the technically welcome guarantee that
H(2) can be diagonalized in a bi-orthogonal basis formed by the two respective sets of the
right and left eigenvectors |±〉 and |±〉〉 such that

H(2)|±〉 = E±|±〉, 〈〈±|H(2) = 〈〈±|E±. (3)

The diagonalizability is lost on the boundary ∂D(2) (where the basis of equation (3) becomes
incomplete) and the reality of the energies is lost everywhere in the open complement of D(2).

In a way discussed thoroughly in our recent letter [2], the two-dimensional model (3)
proves particularly useful for an elementary explicit illustration of one of the ‘key tricks’ which
re-assigns the necessary Hermiticity to the similar operators. The goal is being achieved by a
suitable redefinition of the metric � and, hence, of the scalar product,

|ψ〉 � |φ〉 ≡ 〈ψ |�|φ〉, � = �† > 0. (4)

During the last few years, such a recipe has been revealed and/or implemented by several
independent groups of authors sampled here in [3–6].

1.2. Construction of the metrics � for a given Hamiltonian

One should re-emphasize that, in general, a redefinition of the metric � in Hilbert space is
fully compatible with the postulates of quantum mechanics, provided only that the reality of
the spectrum is guaranteed. From time to time, the efficiency of the trick is being confirmed
in various less standard applications of quantum theory [7, 8].

In the notation of equation (3), the essence of the trick derives from the observation that
for many manifestly non-Hermitian Hamiltonians H �= H † with real spectra one can follow
the two-dimensional guidance and construct the two families of the left eigenvectors |n〉〉 and
of the right eigenvectors |m〉 of a given H. They form a bi-orthogonal basis in Hilbert space.
In the next step one easily verifies, in all the finite-dimensional cases at least, that the operator
defined by the spectral-representation-like formal expansion

� =
∑

n

|n〉〉sn〈〈n| (5)

satisfies the linear operator equation

H †� = �H. (6)

In the final step of the argument one restricts all the parameters sn to the real and positive
numbers and concludes that the properties of the resulting operator � qualify it for a metric-
operator interpretation as discussed in the review paper [3]. This means that the ‘correct’ inner
product is ambiguous as it may be defined by any prescription (5). Its choice in fact fixes our
selection of an explicit representation of the Hilbert space of states and, hence, ‘the physics’.

There exist several remarkable differences between the unique, ‘standard’ choice of � = I

and all the ‘nonstandard’ � �= I in equation (4). For this reason, usually, the Hermiticity
condition (6) with � �= I is being re-named to ‘quasi-Hermiticity’ [3, 5]. One of the most
characteristic consequences of the quasi-Hermiticity of a Hamiltonian H lies in the necessity
of a specification of the domain D of parameters where the spectrum of energies remains real.
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2. PT -symmetric models

2.1. Modified harmonic oscillators

Under the assumption H �= H † some of the eigenvalues become complex whenever we
leave the quasi-Hermiticity domain D of parameters in H. In the context of one-dimensional
differential Schrödinger operators the problem has been made popular by Bender et al [4] who
studied the generalized Bessis’ oscillators

H(GB)(ν) = − d2

dx2
+ g(x)x2, g(x) = (ix)ν, ν ∈ R (7)

and conjectured that all the bound-state energies remain real iff ν � 0, i.e., inside the very
large domain D(GB) ≡ (0,∞) of the exponents ν. Rigorously, this conjecture has only been
proved three years later [9]. One should note that the difficulty of this proof is in a sharp
contrast with the elementary character of the above-mentioned construction of D(2) related to
the finite-dimensional H(2).

Our present paper is inspired by the question of feasibility of the constructions of the
quasi-Hermiticity domains D(N) for matrices at the higher dimensions N > 2. Predecessors
of such a project can be seen not only in the exhaustive analyses of virtually all the two-
dimensional cases [10] but also in our recent note [11] where we reported the feasibility
of a complete and non-numerical reconstruction of the domain D(3) for certain special PT -
symmetric three-by-three toy Hamiltonians.

We shall address here the natural question of the specification of D for the matrix
family of the perturbed harmonic-oscillator Hamiltonians (1) restricted by an additional
requirement of their PT -symmetry. We believe that such band-matrix models are really
exceptional. One of our reasons originates from the observation that in the most elementary
differential-operator representation of H(HO), all the wavefunctions ψn(x) pertaining to the
above-listed energies E(HO)

n = 2n + 1 are endowed with an additional, parity quantum
number, Pψn(x) = ψn(−x) = (−1)nψn(x). This is a consequence of the commutativity
PH(HO) = H(HO)P which is manifestly broken in all the perturbed matrix models H(N).

The PT -symmetry requirement PT H(N) = H(N)PT is quite natural to impose,
especially because the operator T can be treated as a mere transposition. In addition, it
is easy to imagine that in the given basis the operator P is represented by the diagonal matrix
with elements Pnn = (−1)n. As a net consequence, the requirement of the PT -symmetry
degenerates to the elementary rule an = −bn at all subscripts n in equation (1),

H(N) =




1 a0 0 . . . 0

−a0 3 a1
. . .

...

0 −a1 5
. . . 0

...
. . .

. . .
. . . aN−2

0 . . . 0 −aN−2 2N − 1




. (8)

These are the models which we are going to analyse.

2.2. An additional ‘up–down’ symmetrization

2.2.1. A generic attraction of the levels. After a few numerical experiments with equation (8)
one reveals a comparatively robust survival of the reality of the spectrum in perturbative
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regime. The phenomenon can be understood as one of the mathematically most interesting
consequences of the ‘sufficient separation’ of the matrix elements 1, 3, . . . along the main
diagonal [12].

In contrast, even a strict observation of the equidistance of the elements on the main
diagonal need not necessarily be of any help in a deeply nonperturbative regime. This danger
is well known and the monograph [13] can be consulted for an extremely persuasive illustration
of the emergence of unexpected difficulties even in a symmetric nonperturbative version of
our example (8) with an apparently innocent choice of the dimension N = 20 and with an
apparently ‘not too nonperturbative’ constant diagonal where a0 = a1 = · · · = a18 = a.

In order to avoid similar complications in our present PT -symmetric models we may try
to assume, in the first step, that just a single coupling a = ak becomes large. In such a case,
solely the two neighbouring energies become involved and perceivably modified. Generically,
in a way controlled by the mere two-dimensional submatrix H

(2)

(k) of H(N) we have

H
(2)

(k) =
(

2k + 1 a

−a 2k + 3

)

so that the energy values become ‘attracted’ by each other in proportion to |ak | at any k < N−1,

Ek = 2k + 2 −
√

1 − a2, Ek+1 = 2k + 2 +
√

1 − a2.

The mechanism of this effect is virtually independent of the rest of the spectrum (which
may be considered pre-diagonalized) so that we may always expect that some energies get
complexified whenever the couplings become sufficiently strong.

This means that, intuitively, we may always visualize the coupling dependence of the
energies as their mutual attraction. In this sense we are able to guess that the levels En0

in the middle of the matrix (i.e., such that n ≈ n0 ≈ N/2) will be ‘maximally protected’
against the complexification due to their multiple and balanced ‘up’ and ‘down’ attraction by
all the other levels.

Such a balance may be quantitatively (though not qualitatively) violated by the differences
in the absolute values of the pairs of couplings an0+k and an0−k at all the allowed index shifts k.
For this reason, we shall restrict our present attention to the special class of the Hamiltonian
matrices (8) which are, in this sense, symmetrized and have

aj = aN−2−j j = 0, 1, . . . , jmax(=entier[N/2]). (9)

This means that everywhere in what follows we shall reduce the class of the (N−1)-parametric
chain models (8) to its ‘up–down-symmetrized’ subset

H(N) =




δ − 1 a0 0 . . . 0

−a0 δ − 3
. . .

. . .
...

0 −a1 δ − 5 a1 0
...

. . .
. . .

. . . a0

0 . . . 0 −a0 δ − 2N + 1




. (10)

Obviously, the specific choice of the global shift δ = N of the origin of the energy scale
also makes the main diagonal of the whole matrix ‘up–down’ symmetric. Still, it is slightly
unpleasant that at the strictly integer half-dimensions K = N/2 the ‘last’ free parameter
ajmax enters our matrix H(N) ‘anomalously’, i.e., just twice. This means that the parity of
N introduces a fairly nontrivial difference between the corresponding up–down-symmetric
models (10).
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2.2.2. Even dimensions N = 2K,K = 1, 2, . . . . As long as we intend to analyse the secular
determinants of our matrices [13], it makes sense to simplify our notation and, in particular, to
get rid of the subscripts and abbreviate a = ajmax , b = ajmax−1 and so on, up to the last element
a0 abbreviated, whenever needed, by the last letter z. In this notation, obviously, the symbol
z = a0 coincides with a = ajmax = a0 at K = 1 in

H(2) =
[

1 a

− a −1

]

or with b at K = 2 in

H(4) =




3 b 0 0
−b 1 a 0
0 −a −1 b

0 0 −b −3


 ,

etc. We see that the general matrix (10) with N = 2K may be easily understood as partitioned
into four K-dimensional submatrices,

H(2K) =




2K − 1 z 0 . . .

∣∣∣
−z

. . .
. . .

. . .
∣∣∣ ...

0
. . . 3 b

∣∣∣ 0 . . .
...

. . . −b 1
∣∣∣ a 0 . . .

. . . 0 −a

∣∣∣−1 b 0 . . .

. . . 0
∣∣∣−b −3

. . .
...

∣∣∣ . . . . . .
. . . z∣∣∣. . . 0 −z 1 − 2K




.

The simplest illustrative example H(2) has already been shortly discussed above (cf also
[2]). In the general case the secular polynomial det(H (2K) − E) will be a polynomial
of the Kth degree in s = E2 and it will only depend on the squares of the couplings
a2

jmax
≡ a2 = A, a2

jmax−1 ≡ b2 = B, . . . , a2
0 ≡ z2 = Z.

2.2.3. Odd dimensions N = 2M + 1,M = 1, 2, . . .. Whenever the dimension of our
band-matrix Hamiltonian H(N) with equidistant matrix elements on its main diagonal is odd,
N = 2M + 1, we have

H(2M+1) =




2M z 0
∣∣∣ 0

∣∣∣ 0 0 0

−z
. . .

. . .
∣∣∣ 0

∣∣∣ 0 0 0

0
. . . 2

∣∣∣ a

∣∣∣ 0 0 0
0 0 −a

∣∣∣ 0
∣∣∣ a 0 0

0 0 0
∣∣∣−a

∣∣∣−2
. . . 0

0 0 0
∣∣∣ 0

∣∣∣ . . . . . . z

0 0 0
∣∣∣ 0

∣∣∣ 0 −z −2M




.

Here the central matrix element vanishes and the PT -symmetric coupling is mediated again
by the M real matrix elements a, b, . . . , z. Omitting the overall factor E we may reduce the
secular polynomial det(H (2M+1) − E) to a polynomial of the Mth degree in s = E2. It will
again depend on the squares of the couplings only.
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3. Hamiltonians of the even dimensions N = 2K

In the two-dimensional case with K = 1 the whole discussion remains entirely elementary
(see above) and one can conclude that there exist precisely two points of the boundary ∂D(2)

(called ‘exceptional points’ in the literature [14, 15]) which are defined by the elementary rule
a

(EP)
± = ±1, i.e., by the single root A(EP) = 1 of the single energy-degeneracy condition.

3.1. Four-by-four model, K = 2

For the four-by-four Hamiltonian H(4) the standard definition of the spectrum

det




3 − E b 0 0
−b 1 − E a 0
0 −a −1 − E b

0 0 −b −3 − E


 = 0,

i.e., the quadratic secular equation for s = E2,

s2 + (−10 + 2b2 + a2)s + 9 + 6b2 − 9a2 + b4 = 0,

can easily be solved in closed form,

s = s± = 5 − b2 − 1/2a2 ± 1/2
√

64 − 64b2 + 16a2 + 4b2a2 + a4. (11)

These formulae may be read as an implicit definition of D(4), i.e., of the reality domain of
the energies or, equivalently [5], of the quasi-Hermiticity domain of the Hamiltonian of our
K = 2 chain model.

For a more explicit construction of D(4) we can make use of the up–down symmetry (9)
and imagine that during the initial perturbative mutual attraction of the neighbouring levels
one can only guarantee the growth of the ground-state minimum E0 = E−,+ ≡ −√

s+ and the
decrease of the top-state maximum E3 = E+,+ ≡ +

√
s+.

Beyond perturbative domain, at certain ‘exceptional-point’ combinations (a, b) =
(a, b)(EP+) of the sufficiently large strengths a and b, the latter two extreme energy levels
will ultimately coincide (and, immediately afterwards, complexify) in a way discussed in
section 2.2.1, E

(EP)
−,+ = E

(EP)
+,+ = 0. At another set of the EP coupling doublets (a, b) =

(a, b)(EP−), both the two ‘internal’ levels may also coincide as well, E±,− ≡ ±√
s− = 0. In

this way, the complete boundary ∂D(4) of the quasi-Hermiticity domain is a curve in the a–b

plane formed by the ‘weaker’ doublets of the EP strengths (a, b)(EP±). The shape of such a
boundary can be deduced from equation (11) (cf figure 1).

In a magnified detail, figure 2 demonstrates that the graphical representation ceases
to be reliable in the fairly large vicinity of the common maximum of the sizes of the
allowed couplings a and b. Fortunately, near any such an ‘extremely exceptional’ point
(a, b) = {(±

√
A(EEP),±

√
B(EEP)} of the a–b plane, the details of the shape of the boundary

∂D(4) can be described by the purely analytic means. An extension of the latter observation
to all the dimensions N will become, after all, a core of our present message.

Let us explain the method for N = 2K at any K. In the first step one realizes that
s(EEP) = 0 due to the up–down symmetry. As long as this must be the only root (i.e., a
maximally degenerate root) of the polynomial secular equation

sK + PK−1(A,B, . . .)sK−1 + PK−2(A,B, . . .)sK−2 + · · · = 0, (12)
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Figure 1. One quarter of the domain D(4) (cf section 3.1).
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Figure 2. A magnified spike of the domain D(4).

it can only exist if the K values A(EEP), B(EEP), . . . of the EEP coupling strengths satisfy the
nonlinear set of the following K necessary conditions:

PK−1(A
(EEP), B(EEP), . . .) = 0,

PK−2(A
(EEP), B(DEEP), . . .) = 0,

. . .

P0(A
(EEP), B(EEP), . . .) = 0.

(13)
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At K = 2 the latter set of polynomial equations reads

A + 2B = 10, (3 + B)2 = 9A

and an elimination of A leads to a quadratic equation for B + 3 giving a spurious solution
A = 64 and B = −27 (which would imply an imaginary coupling b) and the unique correct
solution A(EEP) = 4 and B(EEP) = 3.

3.2. Six by six model, K = 3

In a full parallel with the preceding subsection, secular equation

det




5 − E c 0 0 0 0
−c 3 − E b 0 0 0
0 −b 1 − E a 0 0
0 0 −a −1 − E b 0
0 0 0 −b −3 − E c

0 0 0 0 −c −5 − E




= 0

in its polynomial form (12),

s3 + (2b2 − 35 + 2c2 + a2)s2 + (b4 + 2c2a2 − 44b2 + 28c2 − 34a2 + c4 + 259 + 2b2c2)s

+ a2c4 − 10b2c2 + 30c2a2 + 225a2 − 30c2 − c4 − 25b4 − 225 − 150b2 = 0,

remains solvable in closed form. As long as our present attention is concentrated on the
EEP extremes, we shall skip the details of the complete description of the hedgehog-
shaped surface ∂D(6) in the full three-parametric space and note only that this shape must
be all contained within the ellipsoid with the boundary described by the first constraint of
equation (13), a2 + 2b2 + 2c2 = 35.

At K = 3 the full solution of the triplet of equation (13) ceases to be easy but it still
remains feasible. Besides the unique and acceptable correct solution

A(EEP) = 9, B(EEP) = 8, C(EEP) = 5, K = 3, (14)

one obtains another set of the alternative solutions generated, after the patient elimination of
A and B, in terms of roots of a final ‘effective’ polynomial in single variable C,

416C4 + 20 909C3 + 22 505C2 + 28 734 375C − 48 828 125 = 0. (15)

Out of its two real roots, C− = −65.803 607 06 and C+ = 1.693 394 621, the former one is
manifestly spurious giving the imaginary coupling c. For the latter root we have to recall the
corresponding condition

22 156 250B+ + 2912C+
3 + 1 446 363C+

2 + 820 546 875 + 9 654 410C+ = 0

to see that the coupling b = √
B+ is imaginary and should be rejected as spurious as well.

3.3. Eight by eight model, K = 4

Out of the four EEP constraints (13) at K = 4 the first equation P3(a
2, b2, c2, d2) = 0 defines

the surface of an ellipsoid or, after the change of variables a → A = a2 etc, a planar side of a
simplex,

A + 2B + 2C + 2D = 84.

By construction, the domain D(8) is circumscribed by this ellipsoid or simplex. Unfortunately,
one hardly finds any immediate geometric interpretation of the remaining quadratic,
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cubic and quartic polynomial equations P2(A,B,C,D) = 0, P1(A,B,C,D) = 0 and
P0(A,B,C,D) = 0 containing 13, 19 and 20 individual terms, respectively, and admitting
just marginal simplifications, e.g., to the nine-term equation

1974 + (B + C + D)2 + 2AD + 2BD + 2AC = 83A + 142B + 70C − 50D

in the P2-case, etc.
In this setting it comes as a real surprise that the above-derived K = 3 rule (14) still finds

its unique K = 4 counterpart which, in addition, possesses the closed form again,

A(EEP) = 16, B(EEP) = 15, C(EEP) = 12,D(EEP) = 7, K = 4. (16)

Its derivation necessitated the use of the fully computer-assisted Gröbner-basis technique. Just
for illustration one may mention the K = 4 form of the final ‘effective’ polynomial equation,

314 432D17 − 5 932 158 016D16 + · · ·
+ 153 712 881 941 946 532 798 614 648 361 265 167 = 0,

representing the ‘next-door neighbour’ of the still exactly factorizable equation (15).
In a test of the uniqueness of solution (16) one finds out that it possesses

seven real and positive roots D. Out of them, the following three ones are
negative and, hence, manifestly spurious, −203.914 709 5,−156.666 700 1,−55.499 924 41.
We skipped the proof of the spuriosity for the remaining four roots, namely,
of 0.419 285 438 5, 5.354 156 128, 1354.675 195 and 18 028.167 89 since the related
calculations, however straightforward, become unpleasant and clumsy. For example, the
values of A are given by the rule α × A = (a polynomial in D of 16th degree) where the
number of digits in the auxiliary integer constant α exceeds one hundred.

3.4. Arbitrary even dimension N = 2K

Even though we did not dare to test the applicability of the Gröbner-basis technique at K = 5,
we were lucky in noticing that the previous results already admitted the following extrapolation
to any K:

A(EEP) = K2, B(EEP) = K2 − 12, C(EEP) = K2 − 22, D(EEP) = K2 − 32, . . . .

(17)

This is our first main result. The validity of this empirically revealed rule has subsequently
been tested and confirmed by the incomparably simpler direct insertions.

As a byproduct of these verifications, the general ellipsoidal surface form of the first item
in equation (13) has been predicted from the data available at K � 4 and re-confirmed
at several higher K > 4 giving, in terms of the original coupling-strength variables of
equation (8) with symmetry (9),

A + 2 (B + C + · · · + Z) ≡ a2
jmax

+ 2a2
jmax−1 + · · · + 2a2

0 =
N−2∑
k=0

a2
k = 4K3 − K

3
(18)

or, in the form of an immersion of D in an ellipsoid in K dimensions,

a2 + 2b2 + · · · + 2z2 ≡
N−2∑
k=0

a2
k � 4K3 − K

3
. (19)

These observations are in a complete agreement with the individually evaluated formulae and
carry a geometric interpretation showing that every domain D(2K) (where all the energies
remain real) is circumscribed by a certain ellipsoidal hypersurface. Its intersections with the
boundary ∂D(2K) coincide with the 2K EEP points with the coordinates a(EEP) = ±K, b(EEP) =
±√

K2 − 1, etc.
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4. Hamiltonians of the odd dimensions N = 2M + 1

In a one-parametric three-by-three illustration with M = 1,

H(3) =

 2 a 0

−a 0 a

0 −a −2




the determination of the interval of quasi-Hermiticity a ∈ D(3) = (−√
2,

√
2) is trivial since

the secular equation −E3 + (4 − 2a2)E = 0 is exactly solvable. In a remark [11] we also
studied a ‘generic’ three-dimensional (and three-parametric) matrix model where we relaxed
both the equidistance assumption concerning the main diagonal and our present simplifying
‘up–down’ symmetrization assumption a0 = a1.

4.1. Five-by-five model, M = 2

A comparatively elementary two-parametric example of our present class of models of
section 2.2.3 is still encountered at M = 2,

H(5) =




4 b 0 0 0
−b 2 a 0 0
0 −a 0 a 0
0 0 −a −2 b

0 0 0 −b −4


 .

Its secular equation gives the central constant energy E0 = 0. The other two pairs of the real
or complex conjugate levels En = −E−n = √

s with n = 1, 2 are obtained from the remaining
polynomial equation in the new variable s = E2,

−s2 + (20 − 2b2 − 2a2)s − 64 − 16b2 + 32a2 − b4 − 2a2b2 = 0. (20)

We should determine the domain D(5) in which all the energies remain real. This means that
inside the closure of the domain of quasi-Hermiticity D(5) both the roots of equation (20) must
be non-negative.

Our task is elementary since the M = 2 eigenvalue problem is solvable in closed and
compact form,

E±1 = ±
√

10 − a2 − b2 −
√

36 + 12a2 + a4 − 36b2,

E±2 = ±
√

10 − a2 − b2 +
√

36 + 12a2 + a4 − 36b2.

Thus, the results of the method of preceding section may be complemented by direct
calculations. In terms of the two non-negative quantities A = a2 � 0 and B = b2 � 0
the reality of the energies will be guaranteed by the triplet of inequalities. The first one reads
10 � A + B and restricts the allowed values of A and B to a simplex. The second condition
36 + 12A + A2 � 36B requires that the allowed values of B must lie below a growing branch
of a parabola Bmax = Bmax(A). The third condition (8 + B)2 � (32 − 2B)A represents an
easily visualized upper bound for A � Amax = Amax(B) where the latter hyperbola-shaped
function grows with B in all the interval of interest.

Beyond the above direct proof we may also parallel the considerations of the preceding
section and imagine that the symmetry of equation (20) implies that its triple root must vanish,
s = s(EEP) = 0. This means that in the polynomial equation (20) both the coefficients at the
subdominant powers of s must vanish. These two coupled conditions degenerate to the single
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quadratic equation with the unique non-spurious solution A(EEP) = 6 and B(EEP) = 4. Thus,
in a way complementing our above direct discussion of the reality of the energies we see that
at our EEP point all the three above-mentioned inequalities become saturated simultaneously.

4.2. Seven-by-seven model, M = 3

By the same Gröbner-basis method as above we derive the result

A(EEP) = 12, B(EEP) = 10, C(EEP) = 6, M = 3. (21)

It is again unique because one of the two roots C± = 27 ± 9
√

21 of the ‘first alternative’
Gröbnerian ‘effective’ equation C2 − 54C = 972 and both the roots −354 ± 60

√
34 of the

‘second alternative’ equation C2 + 708C + 2916 = 0 are negative while the only remaining
positive root C+ = 68.243 181 25 gives the negative B = 28 − 3C.

4.3. All the (2M + 1)-dimensional models with M � 4

At M = 4 we still were able to evaluate the explicit form of the secular equation,

14 745 600 − 7 372 800A + · · · + (−2C + 220 − 2B − 2A − 2D) s4 − s5 = 0

and we also still computed the M = 4 EEP solution directly,

A(EEP) = 20, B(EEP) = 18, C(EEP) = 14, D(EEP) = 8, M = 4. (22)

We already gave up the discussion of its uniqueness as overcomplicated. Starting from M = 5
this enabled us to change the strategy and to continue the calculations by merely confirming
the validity of the following general odd-dimensional formula:

A(EEP) = M(M + 1), B(EEP) = M(M + 1) − 1 · 2 = M(M + 1) − 2,

C(EEP) = M(M + 1) − 2 · 3, D(EEP) = M(M + 1) − 3 · 4, . . . .
(23)

This formula is our second main result.
In order to complete the parallels with the previous section, let us finally recollect the

universal ellipsoidal-surface embedding (18) of the domains D(2K) and emphasize that its
present odd-dimension analogue is even simpler. Indeed, returning once more to all the
M � 4 calculations of this section we arrive at the extrapolation formula

A + B + C + D + · · · + Z = 2M3 + 3M2 + M

3
, (24)

the validity of which is very easily confirmed (and was confirmed) at a number of higher
integers M > 5. Its alternative arrangement reads

a2 + b2 + · · · + z2 � 2M3 + 3M2 + M

3
(25)

showing that every quasi-Hermiticity domain D(2M+1) is circumscribed by a certain minimal
hypersphere, with the mutual intersections lying precisely at the 2M EEP points with the
coordinates a(EEP) = ±√

M(M + 1), b(EEP) = ±√
M(M + 1) − 2, etc.

5. Summary

We introduced a class of the tridiagonal and up–down symmetrized matrix chain models
H(N), the spectrum of which remains equidistant in the decoupled limit. We believe that
beyond their above-mentioned direct connection to physics of harmonic oscillators exposed
to a small finite-dimensional perturbation, another interesting source of their possible future
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physical applicability could be sought in the equidistance of spectra of certain manifestly
finite-dimensional spin-chain models possessing equidistant spectra (cf, for illustration, the
Polychronakos’ SU(N) model [16] or its supersymmetric SU(m|n) generalization [17] etc).

At any dimension N of our Hamiltonians H(N) we determined the coordinates of all the
EEP (=extreme exceptional point) N-plets of the matrix elements a(EEP), b(EEP), . . . , z(EEP), the
choice of which leads to the maximal, N-fold degeneracy of the N-plet of the real energy levels
pertaining to the underlying model. At N = 2M + 1 the latter EEP values are ‘maximal’ in
the sense of the norm defined as a square root of the sum of their squares. The same comment
applies at the even dimensions N = 2K after a slight modification of the norm taking just
one-half of the value of the ‘central’ coupling a2 in the sum displayed in equation (18).

Some of the specific merits of our class of models may be seen:

• in the ‘user-friendly’ tridiagonal structure of its Hamiltonians H(N);
• in the feasibility of an illustrative simulation of all the possible scenarios leading to

2k-tuple EP-like degeneracies of the energies (followed by their PT -symmetry-related
complexifications) at all the eligible multiplicities k � N/2;

• in the fact that for the latter and similar purposes the models contain precisely a necessary
and sufficient number of free parameters;

• last but not least, in an ‘exact solvability’ leading to closed formulae at all the dimensions
N, for the EEP coordinates at least.
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